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A B S T R A C T   

This paper presents the development of a coupled shape and divertor controller for ITER with capabilities to 
control the flux expansion and an advanced divertor configuration, the x-divertor (XD), in which a secondary x- 
point is placed in the downstream scrape-off layer. Due to the high-performance nature of ITER and its relatively 
few shaping coils, satisfying constraints on the coil currents, power supplies, and plasma shape is a challenge for 
this configuration. To meet these constraints the controller uses the constrained linear quadratic regulator 
(CLQR) framework [1], a variant of model predictive control (MPC). Previous work [2] has shown the existence 
of XD equilibria on ITER and in this study, we identify a control pathway for achieving the “pure” XD where the 
secondary x-point is placed at the outer strike point, representing a maximally flux-expanding scenario. Con
straints are observed throughout the transition. One limitation is that at high flux expansion, the shallow angle of 
incidence of the magnetic field on the divertor results in a reduced plasma wetted area via tile shadowing. On the 
other hand, the high flux expansion and flaring characteristic of the XD facilitate enhanced detachment, which 
could negate the shadowing effect to some degree. In this case it would be desirable to operate as close to the flux 
expansion limit as possible. To this end we also demonstrate the controller’s ability to track a trajectory for the 
flux expansion near the accepted angle of incidence limit.   

1. Introduction 

Managing power exhaust at the plasma-material interface is a critical 
challenge for next-gen tokamaks such as ITER and DEMO, with much 
effort focused on keeping heat flux below the solid material limit of 
10 MW/m2. One strategy is to make use of so-called advanced divertor 
geometries such as the snowflake divertor (SFD) [3], x-divertor (XD) [4], 
and super x-divertor (SXD) [5]. Briefly, these strategies decrease heat 
flux by increasing the poloidal flux expansion and plasma wetted area, 
among other mechanisms. 

The in-place strategy for ITER does not use an advanced divertor and 
instead relies on the standard x-point divertor, vertical targets, and 
operation in the partially detached regime [6]. However, while not 
considered in the original design, more recent work [2] has shown the 
existence of some x-divertor equilibria on ITER. This opens up the pos
sibility of experimenting with XD scenarios on ITER in the event that the 
in-place heat flux strategy has unforeseen issues, or more likely, as a test 
case for future reactors. There is some historical precedent for this in 
that NSTX [7], DIII-D [8], and EAST [9] have made major 
originally-unplanned-for upgrades to the divertor in order to explore 

alternative and higher power scenarios. The upgrade on EAST, for 
example, was motivated by the desire to operate with higher scrape-off 
layer (SOL) power and considers a Nearby-Double-Null (similar to the 
XD) configuration. If it were possible to test an advanced divertor sce
nario on ITER, this could provide valuable information for e.g., DEMO, 
which has called for investigation into advanced divertors and liquid 
metal divertors [10] (an interesting possibility is combining both con
cepts, since liquid metals can tolerate extremely low strike point angles 
which is a concern of the XD). 

In this work we explore the possibility of the XD configuration on 
ITER from a control perspective. Other advanced divertors are not 
suitable candidates for ITER since the SXD would require geometric 
changes to the machine, and the SFD requires excessive coil currents 
[11]. The XD is defined by the presence of a secondary x-point in the SOL 
near the target plate. This forms a region of low poloidal field near the 
target, increasing the SOL connection length and connection length 
gradient (flaring). The XD can modestly increase plasma-wetted area 
(limited by a shadowing effect of the tiles) but the main advantages as 
compared to the standard divertor relate to detachment. The XD de
taches at lower density and features improved detachment front stability 
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[2,4,12]. Since divertor density has a negative effect on core confine
ment, in the XD, core performance can remain roughly constant for 
deeper levels of detachment. As mentioned, others have shown that 
equilibria exist but this does not necessarily guarantee a large subspace 
of XD equilibria or a robust control pathway for the XD. The control 
pathway must take into consideration the plasma dynamics and limits 
on the superconducting coil system and power supplies. In this study we 
develop a model predictive controller and apply this to the shape and 
divertor control problem on ITER. We investigate several aspects of 
advanced divertor control including flux expansion control, secondary 
x-point formation, and transition during rampup. 

The isoflux method [13] is used to perform both the shape and 
divertor control. For shape control, target boundary points for the shape 
are specified (see Fig. 3), and the coil currents are adjusted so that the 
flux at these points is equal to the flux at the boundary. By divertor 
control we mean controlling various aspects of the divertor configura
tion such as the flux expansion, x-point positions, and strike point lo
cations. Since these quantities are defined by the flux distribution, the 
underlying model for shape and divertor control is equivalent. 

Traditionally, advanced divertor controllers such as those used on 
NSTXU and DIII-D [14–18] have used decoupled schemes for shape and 
divertor control. That is, while the control algorithms are certainly able to 
mix shape and divertor control coils, in practice this is not done since the 
machines have an abundance of actuators. These controllers also used 
proportional-integral-derivative (PID) and linear-quadratic-regulation 
(LQR) methods. Because of the relatively fewer control actuators on 
ITER (11 independent poloidal field coil circuits), and the large distances 
from coils to plasma, the shape and divertor control scheme for ITER must 
be coupled. Additionally, actuator limits become more constricting as the 
machine size increases. Initial testing found that the control pathway and 
actuator limits were too difficult to navigate with LQR methods, moti
vating the use of model predictive control (MPC) for this study. Specif
ically, we use a variant of MPC known as constrained LQR (CLQR) [1], so 
called because the controller gains are identical to LQR if the constraints 
are inactive. 

As discussed in [19,2] the high flux expansion characteristic of the 
XD cannot by itself solve the heat flux problem. In general, to protect tile 
edges from receiving parallel heat flux, there is a lower limit on the 
incident angle that total magnetic field makes with the divertor target, 
generally accepted as ≥1◦ for an attached plasma. On ITER, the divertor 
monoblocks are oriented so as to not expose edges, although at low 
strike point angles this leads to a reduced plasma wetted area via 
shadowing. These considerations limit the applicability of XD scenarios. 

However, a well-known benefit of high flux expansion is enhanced 
detachment. That is, for a given upstream density, radiative power at the 
target is increased. If higher levels of detachment can be obtained with 
the XD, the shadowing effect would be reduced since a larger fraction of 
the heat is transferred via volumetric processes (illustrated in Fig. 2 of 
[2]). An additional benefit of the XD is related to poloidal flaring, as 
quantified by the divertor index DISOL defined in [4], which measures 
the increase in flux expansion moving from x-point to strike point. This 
has been theorized to increase the detachment window and improve 
detachment front stability [20,4,12]. Experiments on DIII-D showed that 
the XD led to detachment onset at 10–20% lower upstream density 
which was attributed partially to high DISOL, since this preferentially 
adds SOL connection length near the target. Thus, while tile shadowing 
is a strong concern it may be possible to increase flux expansion, flaring, 
and detachment synergistically and reduce the strike point angle limit. 

The rest of this paper is organized as follows. Sections 2 and 3 
describe the shape control model and its use in the MPC framework. In 
Section 5.1 we use the controller to simulate flux expansion control 
when operating near the 1◦ strike point angle limit. In Section 5.2 we 
explore the extreme case that this limit can be ignored and identify a 
control pathway for a maximally flux-expanding configuration. This 
simulation includes x-point formation, rampup, and movement of the 
secondary x-point up to the divertor plate to create the pure XD. We find 

that this pure XD configuration can be obtained for a 10 MA plasma 
while satisfying constraints on the coil currents, voltages, and other 
parameters listed in Table 1 throughout the transition. Section 6 
concludes. 

2. Review of the shape control model 

Without a coil set for Ohmic current, the shape control system on 
ITER has three tasks: controlling the plasma current, controlling shape, 
and stabilizing the plasma vertical position. Vertical stabilization (VS) 
control is necessary due to the plasma vertical instability, which occurs 
on the resistive wall time scale (200ms), whereas current and shape 
control (CSC) take place on the timescale of multiple seconds. Due to the 
timescale separation, the control objectives can be designed indepen
dently (Fig. 2) with CSC taking place in the outer loop and VS taking 
place in the inner loop. Many successful control strategies have been 
designed in this way [21–27]. 

2.1. Dynamics model 

Our interest is in developing a state-space dynamics model for the 
CSC loop so that MPC can be readily applied. Each circuit loop in the 
system—including the PF control coils, vacuum vessel elements, and the 
plasma itself—is taken to follow the standard circuit equation 

vs = RsIs + Mss İs + Ψ̇ss,plasma (1) 

With s ∈ {c, v, p} representing the coils, vessel elements, and plasma. 
R represents the internal resistance of the circuit loop and M is the 
mutual inductance between the loop and all other circuit loops. The 
complicating term is Ψ̇ss,plasma which represents the flux change in the 
loop due to spatial movement and redistribution of the plasma current. 
This is in general a non-linear function where the plasma redistribution 
must satisfy the Grad–Shafranov equation. We now linearize this term 
around a nominal equilibrium, and introduce the notation 

Xab :=
∂Ψa,plasma

∂Ib

⃒
⃒
⃒
⃒

eq(t)
(2)  

so that 

Ψ̇ab,plasma =
∂Ψa,plasma

∂Ib

⃒
⃒
⃒
⃒

eq(t)
δİb = Xabδİb (3) 

Table 1 
Inequality constraints used in the pathway scenario (Section 5.2), with the 
activated constraints highlighted. Ṗ and P are the total power derivative and 
power applied to the coils. The activated control point gaps 10, 16 and 17 
correspond to gaps on the upper-inboard and upper-outboard regions.  
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The values of the flux response matrix Xab are obtained using the non- 
rigid linear plasma response model gspert [28] integrated in the General 
Atomics based TokSys environment [29]. In this model, changes in the 
shape of the plasma and in the distribution of current are accounted for 
by explicitly perturbing the Grad–Shafranov equation at a particular 
equilibrium. By writing Eq. (1) for all circuits in the system, in the 
linearized frame we obtain 
⎡

⎣
δvc
0
0

⎤

⎦ =

⎡

⎣
Rc

Rv
Rp

⎤

⎦

⎡

⎣
δIc
δIv
δIp

⎤

⎦+

⎡

⎣
Mcc Mcv Mcp
Mvc Mvv Mvp
Mpc Mpv Mpp

⎤

⎦

⎡

⎣
δİc
δİv
δİp

⎤

⎦

+

⎡

⎣
Xcc Xcv Xcp
Xvc Xvv Xvp
Xpc Xpv Xpp

⎤

⎦

⎡

⎣
δİc
δİv
δİp

⎤

⎦ (4) 

This is easily rewritten in standard state space form 

δİ = A(t)δI + B(t)δv
A(t) = − (M + X(t))− 1R
B(t) = (M + X(t))− 1

(5) 

For this work, we focus primarily on developing the outer current 
and shape control loop. For the inner VS loop, we follow the method 
detailed further in Section 4 of [21]. The voltage applied to the VS coils 
is found by feeding back on the plasma velocity and VS coil currents 

δvvs = [ kD kI ]

[
żp

δIvs

]

:= kvs

[
żp

δIvs

]

(6)  

where żp is the velocity of the vertical position of the plasma current 
centroid, δIvs is the current in the VS coils, and kvs = [kD kI] are the 
controller gains (see [21]). The feedback outputs are estimated from the 
output response model 
[

żp
δIvs

]

= Cvs(t)δI (7) 

So that the dynamics model (Eq. (5)) can be rewritten as 

δİ = A(t)δI + bvs(t)δvvs + Bpf(t)δvpf
= [A(t) + bvs(t)kvsCvs(t)]δI + Bpf(t)δvpf
:= Astabilized(t)δI + Bpf(t)δvpf

(8) 

The B(t) matrix has been divided into components corresponding to 
the control voltages of the vertical stabilization (subscript vs) coils and 
the shaping poloidal field (subscript pf) coils. Eq. (8) represents the 
current dynamics as seen by the outer loop. We use this as the model for 
developing the shape controller, while for simulations we use the full 
model with the vertical stabilization feedback. 

2.2. Output model 

In this section we derive an output model of the form y = CδI in order 
to perform effective current and shape control and perform reference 
tracking of the secondary x-point. For shape control, we use the isoflux 
method and define 31 control segments and control points which 
determine the target shape (Fig. 3). The poloidal flux is measured at each 
control point with the goal of regulating it to be equal to the flux at the 
plasma boundary. We define an error vector between the measured and 
desired outputs as 

e(t) = Z(t) − ZD(t)
Z(t) = [ δIc Ip rx zx rstrike zstrike ψcp×31 ]

T

ZD(t) = [ 0 IpD rxD zxD rstrikeD zstrikeD ψbry×31 ]
T

(9)  

where δIc is the vector of perturbed coil currents (included so that cur
rent changes are penalized), Ip is the plasma current, (rx, zx, rstrike, zstrike) 
are the vectors for x-point and strike point locations, ψcp×31 is the vector 
of flux levels associated with the 31 control points, and ψbry is the flux 
quantity defining the plasma boundary. The subscript D denotes a 
desired value for that quantity. Perturbing e at a nominal equilibrium 
gives the output equation with y = δe 

δe =

[
∂(Z − ZD)

∂Ic

∂(Z − ZD)

∂Iv

∂(Z − ZD)

∂Ip

]
⎡

⎣
δIc
δIv
δIp

⎤

⎦⇔ y = C(t)δI (10) 

The above derivatives are obtained using the non-rigid plasma 
response model [28]. More detail on these calculations is given in Sec
tion 2.3. Note that, with the exception of ψbry×31, all the elements of ZD 
have partial derivatives equal to 0, since most of the targets are preset 
and not dependent on the states. The control objective is to drive the 
error vector to 0. Using 

Fig. 1. (a) Transition from the standard divertor (SD) to the x- 
divertor (XD) in the pathway scenario (Section 5.2) with plasma 
current Ip = 4 MA. In the SD there is a strong gradient in the flux 
between coils PF5 and PF6. To create the XD, a secondary x-point 
is formed by controlling the flux gradient to zero at a target 
location between these coils. (b) Evolution of the flux expansion 
and Ip = 15MA equivalent strike point angle (sin(θsp) ∝ Bp ∝ Ip) 
during the transition. If limited to 1◦ one would stop the evolution 
at an intermediate time.   

Fig. 2. Current, shape, and position control diagram for ITER. Shaping occurs over multiple seconds while the inner loop (VS) controls the ≈200 ms vertical 
instability. 
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e = e0 + δe (11) 

We see that this is a reference-tracking problem for y with reference 
trajectory 

r = − e0 (12) 

The control objective is now set up as a standard state-space refer
ence-tracking problem as defined by Eqs. (8), (10), (12). 

2.3. X-point derivatives 

In this section we obtain expressions for the spatial movement of the 
x-points, ∂rx

∂Is and ∂zx
∂Is which is important for good tracking behavior. This 

method performs a simple derivative expansion and a cubic convolution 
of the grid point flux and flux response. 

At the x-point the flux gradient is zero ∇ψ( x→) = 0. If the flux is 
perturbed slightly, Newton’s method would find the new x-point by 
solving 

∇ψ( x→) = 0 ≈ JF(x0
→)( x→− x0

→) +∇ψ(x0
→) (13)  

where JF( x0
̅→

) is the Jacobian of ∇ψ( x0
̅→

). Taking the derivative of Eq. 
(13) with respect to the coil currents can be written 

∂ x→

∂I
= − J− 1

F (x0
→)

∂∇ψ(x0
→)

∂I

= − J− 1
F (x0

→)

[ ∂r∂Iψ(x0
→)

∂z∂Iψ(x0
→)

] (14) 

The derivatives on the RHS ∂I ψ were computed at the grid points via 
the nonrigid response model, and we can perform a cubic convolution to 

obtain the value at the desired location. Following the method of Keys 
[30] the convolution is applied first in the radial direction and then in 
the vertical direction. When the grid points around the x-point are 
indexed from − 1 to 2 this gives 

bi =
1
2
[

1 dr d2
r d3

r

]

⎡

⎢
⎢
⎣

0 2 0 0
− 1 0 1 0
2 − 5 4 − 1
− 1 3 − 3 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

∂Iψ(− 1, i)
∂Iψ(0, i)
∂Iψ(1, i)
∂Iψ(2, i)

⎤

⎥
⎥
⎦

∂Iψ(r, z) =
1
2
[

1 dz d2
z d3

z

]

⎡

⎢
⎢
⎣

0 2 0 0
− 1 0 1 0
2 − 5 4 − 1
− 1 3 − 3 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

b− 1
b0
b1
b2

⎤

⎥
⎥
⎦ (15) 

The variables dr and dz are simply the radial and vertical positions of 
the x-point normalized to the grid cell spacing: 

dr = r mod Δr
dz = z mod Δz (16)  

3. Model predictive control 

In MPC, beginning with an initial state, the state-space equations are 
used to predict the system behavior a finite number of steps into the 
future. Then, a mathematical optimization problem is solved over the 
prediction window, minimizing a cost function of the predicted outputs 
and inputs and accounting for inequality constraints. This process is 
often computationally intensive but has been shown to be sufficiently 
rapid for shape control [31]. First, the shape control dynamics (Eq. (8)) 
are converted to discrete time using the zero-order hold method. For 
presentation clarity, we drop the subscripts of Eq. (8) and relabel the 
state and control vectors δI = x and δv = u. The discrete time dynamics 
are then 

xk+1 = Akxk + Bkuk
yk = Ckxk

(17)  

3.1. Cost function and prediction model 

The cost function at the current time step is taken to be 

Jk =
∑N

i=1

[
(yk+i − rk+i)

T Qi(yk+i − rk+i) + uT
k+i− 1Riuk+i− 1

]
(18) 

N is the look ahead number for the prediction model and is set to 
correspond to a prediction window of 9–10 s. We found that larger 
prediction windows increased computation without improving perfor
mance, since the model is time-varying and far-future predictions are 
not as accurate, while smaller prediction windows did not adequately 
plan around the constraints. For example, aggressive path-following 
with a prediction window of 4 s in the flux expansion scenario (Sec
tion 5.1) led the plasma to a dead-end state where the boundary gaps 
could not be met within coil current limits. Qi and Ri are weighting 
matrices for the output errors and actuator usage at each time step, and 
are held constant except for the case of QN. That is, Ri = R and Qi,i∕=N =Q. 
Since we use the Constrained Linear Quadratic Regulation (CLQR) al
gorithm, QN is obtained as the solution to the discrete time algebraic 
Riccati equation which can be solved with the MATLAB dare function. 

QN = Q + AT QNA − (AT QNB)(R + BT QNB)− 1
(BT QNA) (19) 

The cost function can be expressed more efficiently as 

Jk = Ŷ
T

Q̂ Ŷ − 2r̂T Q̂ Ŷ + Û
T

R̂Û (20)  

Ŷ =
[
yT

k+1…yT
k+N

]T
, r̂ =

[
rT

k+1…rT
k+N

]T
, Û =

[
uT

k …uT
k+N− 1

]T
,

Q̂ = blockdiag
(

Q1…QN

)
, R̂ = blockdiag

(
R1...RN

)

Fig. 3. Evolution of the plasma boundary in the pathway scenario (Section 5.2) 
showing movement of the secondary x-point into the “pure” x-divertor 
configuration. The controller maintains plasma shape to a high degree while 
accommodating large changes to the magnetic geometry in the divertor region. 
Lines intersecting the plasma boundary correspond to the shape con
trol segments. 

J.T. Wai et al.                                                                                                                                                                                                                                   



Fusion Engineering and Design 159 (2020) 111957

5

We now find a prediction model for Ŷ , with the intention of writing 
the cost function in terms of the control inputs only. Using the model Eq. 
(17) we find 
⎡

⎢
⎢
⎣

yk+1
yk+2

⋮
yk+N

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

C A
CA2

⋮
CAN

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
E

xk +

⎡

⎢
⎢
⎣

C B
C AB C B

⋮ ⋮ ⋱
CAN− 1B CAN− 2B … CB

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
F

⎡

⎢
⎢
⎣

uk
uk+1

⋮
uk+N − 1

⎤

⎥
⎥
⎦

Or equivalently 

Ŷ = Exk + FÛ (21) 

Upon substituting the prediction model Eq. (21) into Eq. (20), and 
using the symmetry properties of Q̂ and R̂, the cost function optimiza
tion is written in the standard form of a convex quadratic program (QP): 

minimize
Û

Jk = Û
T
HÛ + 2f T Û + Jθ (22)  

H = FT Q̂F + R̂, f = FT Q̂
(

Exk − r̂
)

Jθ is a collection of terms that are invariant to feedback and can be set 
to 0 without changing the optimization. Once coupled with the con
straints, the optimization is solved using mpcqpsolver in MATLAB 
though many other commercial and free solvers exist that can perform 
this optimization. 

3.2. Constraints 

The ITER tokamak has a number of constraints that must be satisfied 
by the current and shape controller (Table 1). Most importantly, to 
prevent damage to the machine the PF coil currents must stay below 
their nominal limits. Since the PF current deviations are included in the 
output vector, this is a type of output constraint. Output constraints are 
also used to prevent the plasma from straying too close to the wall. In 
terms of the isoflux method, this is equivalent to specifying a maximum 
flux error that the plasma can have at any control point. We must now 
manipulate the physical constraints so that they are functions of the 
optimization variables. In particular, since the control model was writ
ten in the linearized system, we must transform the constraints to the 
linearized system. 

Input constraints:Input voltage constraints of the form vmin ≤ vk ≤

vmax can be written as 

G1vk ≤ g1, G1 =

[
I
− I

]

, g1 =

[
vmax
− vmin

]

(23) 

In order to express this as a constraint on the optimization variable Û 
we project the constraint N steps into the future and substitute the 
linearization v = v0 + u to obtain 

Ĝ1 Û ≤ ĝ1 − Ĝ1 v̂0 (24) 

Here, and throughout the remainder of this section we use the hat 
notation to indicate the repetition of a vector or the block-diagonal 
repetition of a matrix, N steps into the future. That is 

Ĝ1 := blockdiag(G1…G1)
⏟

×N ĝ1 :=
[
gT

1 …gT
1

]

⏟
×NT v̂0 :=

[
vT

0 …vT
0

]

⏟
×NT

(25) 

Input rate constraints: We also limit the change in step size that the 
applied input voltages may take. This is an input rate constraint of the 
form 

G2Δvk ≤ g2 (26)  

which can be written in terms of the optimization variable Û by 
recognizing that v̂ = v̂0 + Û and 

Δv̂k =

⎡

⎢
⎢
⎣

I
− I I

⋱
− I I

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Sv

⎡

⎢
⎢
⎣

vk
vk+1

⋮
vk+N− 1

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

vk− 1
0
⋮
0

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
vprev

(27) 

The constraint projected into the future becomes 

Ĝ2Sv Û ≤ ĝ2 − Ĝ2Sv v̂0 + Ĝ2vprev (28) 

Power and power derivative: It was found that the power constraint 
can be met easily without constraints, but the power derivative 
constraint must be included explicitly. 

The power derivative constraint is not affine since it depends on the 
product of the state and input P = IT

c v. However, it can be approximated 
as such by noting that the coil currents evolve much more slowly than 
the applied voltage inputs giving 

Ṗ = İT
c v + IT

c v̇ ≈ IT
c v̇ ≈

1
ts

IT
c Δv (29)  

where the sample time ts of the discrete state-space model is used. This is 
a special case of input rate constraint Eq. (26), and is implemented with 
a small margin to account for the nonlinearities that were dropped. 

State and output constraints:Since the measured outputs (Eq. (9)) 
include the PF coil currents, state and output constraints are handled 
identically. We evaluate constraints of the form 

G3e ≤ g3 (30) 

Substituting the prediction model Eq. (21) and the linearization 
e = e0 + y, the constraint formulation becomes 

Ĝ3FÛ ≤ ĝ3 − ê0 − Ĝ3Exk (31) 

The model predictive controller is now fully defined by the cost 
function Eq. (22) and the constraints Eqs. (24), (28), (31). 

4. Measurement and process noise 

We also simulate the inclusion of measurement and process noise. 
The controller handles this noise by means of Kalman filtering. The state 
equations under consideration are 

xk+1 = Axk + Buk + wk
yk = Cxk + vk

(32) 

The vectors w and v correspond to process noise and measurement 
noise respectively. The Kalman filter gives a recursive algorithm to 
define estimator states x and estimated outputs y = Cx. Then the control 
algorithm is implemented using only the estimated states and outputs. To 
implement the Kalman filter we first define the noise covariance 
matrices 

Q = E[wkwT
k ], R = E[vkvT

k ], Pk|k = E[(xk − xk)(xk − xk)
T
] (33) 

The filter is recursive which leaves the problem of identifying an 
initialization for the error covariance matrix Pk|k. We can take P0|0 = ρQ 
where ρ is a scalar greater than 1, here set to 10. The algorithm can be 
divided into steps as follows: 

First, the error covariance matrix is predicted one step into the future 

Pk+1|k = APk|kAT + Q (34) 

Second, the optimal Kalman gain is found via 

Sk = CPk+1|kCT + R
Kk = Pk+1|kCT S− 1

k
(35) 

Lastly, we project the system one step into the future. The error 
covariance matrix and estimator states are updated as 
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Pk+1|k+1 = (I − KkC)Pk+1|k
xk+1 = Axk + Buk + Kkrk

(36) 

The residual term rk represents the difference between measured and 
predicted outputs and is normally taken as rk = yk − Cxk. However, the 
goal is to have state convergence in the unlinearized frame as discussed 
in [32], so we use the unlinearized outputs to determine the residual. We 
take 

rk = (yk + e0) − (Cxk + e0) (37)  

where e0 is the estimated error at the most recent linearization. Eq. (36) 
highlights the effect of the Kalman filter. The estimator states are inte
grated forward in time according to the state-space model Eq. (32), but 
with a correction term dependent on the residual. The Kalman gain 
matrix Kk indicates how much the residual error should affect the state 
estimate. 

Table 2 indicates the standard deviations of measurement and pro
cess noise for the simulation parameters. For plasma current, the stan
dard deviation σ is estimated using the specification for the Continuous 
External Rogowski (CER) coil diagnostic σ = 0.005 × Ip according to Eq. 
(2) of [33]. The coil current noise levels are estimated according to the 
same relation. Table 2 of [34] gives noise levels for current centroid 
position normalized to minor radius zc/a for various machines. 
Assuming zc/a = 0.01 and that x-point and strike point positions are 
measured with a similar accuracy gives the standard deviation levels of 
2 cm. The noise levels presented here are a first-order estimate and are 
not expected to represent the full diagnostic and reconstruction capa
bility for ITER. 

5. Simulation results 

In this section we perform nonlinear simulations of the controller for 
high flux expansion scenarios. At every time step, we solve the free- 
boundary Grad–Shafranov equation using the circuit currents as 
boundary conditions, and re-linearize the system to determine the A(t), 
B(t), and C(t) matrices of the isoflux model (Eq. (5)). The MPC algorithm 
optimizes to obtain a set of coil voltages and the currents are then in
tegrated forward in time. 

5.1. Scenario: flux expansion control 

In this scenario we consider a plasma that is limited by the shad
owing effect of the monoblocks as discussed in the Introduction. In this 
case we control the flux expansion directly, as opposed to indirectly via 
the position of a secondary x-point (which does not exist). The flux 
expansion is defined 

fexp =
(RBp)mp

(RBp)sp
=

|∇ψ |mp

|∇ψ|sp
(38)  

where the subscripts mp and sp denote the outer midplane and strike 
point positions respectively. Taking the derivative, we find the response 
to changes in the coil currents, which is then included the state-space 
model equations. 

∂fexp

∂I
=

1
|∇ψ|2sp

[
1

fexp
(∇ψ⋅∇∂Iψ)mp − fexp(∇ψ⋅∇∂Iψ)sp

]

(39) 

Fig. 4 shows results for tracking a series of flux expansion step targets 
in an Ip = 15 MA, βp = 0.6, li = 0.9 plasma. Note that for these equilibria, 
the strike point angle can be approximated θsp = 6.2f − 1

exp , so that the 
maximum fexp = 6.5 corresponds to θ < 1◦. We observe that for step 
changes δfexp = 1.85, the shape is held fairly constant with a maximum 
isoflux error of 5 Wb corresponding to ≈10 cm at the control points. 

To accommodate the step changes, the power supply voltages max 
out, accelerating then decelerating the coil currents. Allowing these 
maximum voltages results in settling times of 20 s for each step change. 
The coil current limits are also a constraining factor for fexp tracking, 
with coils PF1 and CS3L both reaching their limits (Fig. 4d). This was 
found to be a common trend for the CS3L coil, where there is competi
tion between satisfying the CS3L limit and having high fexp and high Ip. 

5.2. Pathway to the x-divertor 

In this scenario we simulate a control pathway for achieving the 
maximally flux-expanding x-divertor, in which the secondary x-point is 
placed at the outer strike point. It is shown that it is possible to achieve 
the pure XD using the existing power supply and coil designs with an 
Ip = 10 MA plasma. (At higher Ip it becomes increasingly difficult if not 
impossible to realize the pure XD). This is of course an extreme scenario 
and presumes that a 1◦ limit on the strike point can be overcome, 
perhaps by one of the mechanisms discussed in the introduction. Thus 
Fig. 6 represents a near-upper limit for the fexp and flaring at the divertor, 
from which any detachment benefits may occur. 

In the inductive current scenario, primary x-point formation is 
planned to occur at Ip = 4 MA [35]. We begin control at this point, 
starting with a standard diverted plasma at 4 MA and create the sec
ondary x-point (see Fig. 1). That is, we define a target location for the 
secondary x-point between coils PF5 and PF6 and control the flux 
gradient to zero at this location. After the x-point is created (t = 25 s), we 
give up control of the flux level near the x-point and begin position 
control. The secondary x-point follows a predefined trajectory upwards 
to the outer strike point. At the same time, the coils are used to induc
tively drive the plasma current to 10 MA. See Fig. 3 for the visualization, 
and Fig. 5for the time traces. 

The controller forms the secondary x-point within a few cm of the 
desired location (Fig. 1) and is then capable of tracking it up to the outer 
strike point. The maximum tracking error of 17 cm occurs at t = 40 s, and 
occurs simply because other shaping parameters are weighted more 
heavily or constrained. The position of the primary x-point for example 
is weighted an order of magnitude higher because its motion can have 
adverse effects on the heat flux. The primary x-point moves only about 
2 cm despite the large changes in divertor flux geometry. The ramp-up 
target for Ip is also followed closely. 

The most limiting constraint is keeping the outer strike point posi
tioned on the outer wall of the divertor and is actively constrained by the 
MPC controller for most of the transition. The final values for flux 
expansion and divertor index are plotted in Fig. 6 and represent an upper 
limit for these quantities. The peak values are very sensitive to the final 
x-point position, (peak fexp could, in theory, reach infinity) but the 
average values along the divertor plate (〈DISOL〉=2.5 and 〈fexp〉=35) are 
more robust. 

6. Conclusion 

A feasibility study for control of high flux expansion scenarios 

Table 2 
Measurement and process noise levels standard deviations used for state esti
mation of the system Eq. (32) with a sample time of 200 ms.  

Kalman filter noise (ts = 200 ms)  

Measurement vk  Process wk  

Ic 0.005 max(Ic) 5 × 10− 4 max(Ic) 
Ip 0.005 max(Ip) 5 × 10− 4 max(Ip) 
Iv  – 5 × 10− 5 max(Ic) 
rx 0.01a – 
zx 0.01a – 
rstrike 0.01a – 
rstrike 0.01a – 
ψbry 0.01a〈| ∇ ψ|〉cp  – 
ψcp 0.01a〈| ∇ ψ|〉cp  – 

a = ITER minor radius, 2 m. 
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including an advanced divertor configuration is performed for ITER. 
This study uses the isoflux shape control model and a model predictive 
control framework to perform coupled shape and divertor control. We 
find that the power supplies and coil set are capable of creating and 
controlling a pure x-divertor (XD) configuration for a 10 MA plasma. 
One of the limitations of the high flux expansion scenario is that at low 
strike point angles the plasma wetted area is reduced via shadowing. 
However, high flux expansion and poloidal flaring, characteristics of the 
XD, may facilitate enhanced detachment on ITER and negate some of 
this effect. Thus it would be desirable to operate as close to any flux 
expansion limit as possible. The controller shows good tracking perfor
mance in realizing a reference trajectory for the flux expansion. Results 

were validated in nonlinear simulation. 
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script, or allow others to do so, for United States Government purposes. 

Fig. 4. (a) Tracking step targets for the fexp in a 
15 MA plasma. The maximum fexp = 6.5 is 
equivalent to a strike point angle of 0.95◦. (b) 
The proximity of each coil current to its limit, 
so that a value greater than 0 is a constraint 
violation. The two coils which reach their limit 
are PF1 and CS3L. (c) Power supply voltages for 
each coil. (d) The maximum flux error at the 31 
control points. (e) Boundary gaps at a few select 
locations (inner/outer and lower/midplane/ 
upper). The inner-midplane gap is the most- 
constricting. (f) Total plasma current.   

Fig. 5. (a) Rampup trajectory for the plasma 
current. (b) Proximity of the poloidal field (PF) 
coil currents to their individual limits, so that 
values greater than 0 correspond to constraint 
violations. (c) Power supply voltages applied to 
the coils. (d) Boundary gaps at a few select lo
cations (inner/outer and lower/midplane/ 
upper). (e) The maximum isoflux error at the 31 
control points. (f) The outer strike point posi
tion constrains the control for most of the 
transition. (g) Movement of the primary x-point 
throughout the transition. (h) Reference- 
tracking of the secondary x-point throughout 
the transition.   
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