
J.T. Wai1, M.D. Boyer2 , E. Kolemen1,2

1Princeton University, USA
2Princeton Plasma Physics Laboratory, USA

E-mail: jwai@princeton.edu

Mechanical and
Aerospace
Engineering

PPPL Science Meeting 4/12/2022

Neural net modeling of equilibria in 
NSTX-U



PPPL science meeting 4.12.2022 1

• plasma equilibrium: 
Description of the {plasma position, magnetic flux 
surfaces, currents, internal pressure, etc.} needed to 
characterize force balance. 

• shape control: 
Model for controlling the plasma’s position and 
boundary shape, using external coils as actuators. 

• neural network (NN):
Computational tool that uses data to learn complex 
functions. Can approximate complex calculations 
quickly and accurately. 

Background and definitions:

NSTX-U shape control elements. [1]
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Eqnet: NN capable of predicting the plasma 
equilibrium from either: diagnostics, or coil currents + 
plasma internal profiles. Trained on EFIT01 [13,14] data.  

Pertnet: NN capable of predicting the plasma 
response—a critical component of the shape control 
model. Trained on Gspert code [15,16].

Motivation:  Physics-based models for equilibrium 
design/estimation/control not fast enough or applicable 
to all desired use cases. 

Trained two neural networks relevant to plasma control

J.T. Wai, M.D. Boyer, E. Kolemen, “Neural net modeling of 
equilibria in NSTX-U”, submitted to Nuclear Fusion, 2022. 
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NNs will be integrated into several desired control applications

• Between shot scenario design (Eqnet + Pertnet):
• Fast plasma simulator can inform physics operators, enables 

numerical optimization of actuator trajectories.
• Current ‘flight simulators’ not fast enough to run between shots. 
• Integrate & supplement previous NN profile predictors [1,2]

• Increased availability of equilibrium reconstruction (Eqnet):
• Real-time EFIT reconstruction unavailable early in the shot. 

Workaround uses a hybrid gap controller and isoflux controller but 
suffers oscillations during controller transfer. 

• Simpler method to use a single isoflux controller – measurements can 
be supplied by NN when rt-EFIT not available.

• Continuously monitor and update shape controller (Pertnet):
• Monitor vertical growth rate directly (as opposed to proxy parameters 

like elongation) and take corrective action if too unstable
• Provide real-time updates of the shape control model for better 

controller performance

NSTX-U tokamak with plasma. Source: pppl.gov



Eqnet: NN plasma equilibrium solver
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• The equilibrium describes the magnetic field 
structure of the plasma. Balance between 
outward pressure force and inward JxB force. 

• In a tokamak, the equilibrium is described by 
the Grad-Shafranov equation

Plasma equilibrium describes force balance condition

Magnetic field lines lying on flux surfaces.

204653 NSTX-U equilibrium

𝐽 × 𝐵 = ∇𝑃
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• Solving the free-boundary Grad-Shafranov equation is 
a nonlinear, iterative computation. 
• Iterate between updating the plasma current, externally 

applied field, and flux. 

• Eqnet is a neural net version of this process. Can work 
in different modes (data inputs and outputs): forward 
solver and reconstruction. 

• Also trained to predict parameters directly, for use as 
a control estimator. Similar to previous NNs [3-11]

Eqnet: a neural network equilibrium solver
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• Data inputs and outputs are compressed using PCA to capture 
99.5% variance

• Goal is to predict equilibrium ѱ but more accurate to predict ѱpla

since applied flux is known. 

• PCA on ѱpla : (65x65 grid) à 11 modes
• Results are intuitive and can match a wide range of equilibria 

(limited, lower null, upper null, off-normal)

Data inputs and outputs are compressed using Principal Component 
Analysis (PCA)

Number of PCA components used. Outlined box 
indicates >99.5% captured variance.
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Eqnet architecture is based on a fully-connected NN

Fig 1: Neural net and data architecture. The core of the model is a fully-connected NN.  

• Neural network – tool for approximating many 
types of functions  y = f(x). Has many parameters 
or weights, w. During training weights are tuned 
so that predicted outputs match target outputs. 

Xtrain = coil currents, vessel currents, P’ / FF’ profiles

Ytrain = ѱpla

• Data is from EFIT01 [13,14] magnetics-only 
reconstruction of 2015-2016 NSTXU campaign. 
220 shots & 25,000 equilibria 

• Divided 80-10-10 by shot number into train, 
validation, test datasets
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• Hyperparameters of the neural network found 
by performing grid scans

• Final result is a fully-connected network
• 8 hidden layers, size 800, ELU activation

Grid scans used to optimize hyperparameters

Hyperparameter grid scans

Typical loss curve from NN training
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High agreement of flux surfaces is verified visually
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Flux surfaces predictions capture a wide range of equilibria with high 
accuracy (median x-point error 4mm) Shape parameter predictions. 

Eqnet Fwd = parameters extracted from NN flux predictions. 
Eqnet Fwd-Ctrl = parameters predicted directly by NN. 

204125
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Eqnet predictions of features have errors <1cm
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Multiple-cm errors do occur:
• larger than desired for control and simulation 

purposes
• however, these happen during oscillatory 

dynamic phases (e.g. 68% errors >3cm occur 
within first or last 100ms)
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Pertnet: NN calculation of the plasma 
response 
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• If a coil current is perturbed slightly, it changes the 
magnetic field so that there is a force exerted on the 
plasma. Response = how does the plasma current shift 
and redistribute in response to this force. 

The plasma response describes how the plasma redistributes in 
response to external perturbations

• Plasma response is an integral part of the shape control 
circuit model, which describes the evolution of coil and 
vessel currents. 

• Also needed to describe how shape parameters respond to 
actuators.  

• Can also be used to calculate the growth rate of the plasma 
vertical instability (related to eigenvalue of circuit equation).  
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Pertnet utilizes similar data and network architecture to Eqnet

• Ground truth is taken from gspert code [15,16] 
applied to EFIT01 equilibria. 

• Similar data and NN architecture to Eqnet. Input 
is a full description of the equilibrium. 

Pertnet hyperparameter tuning
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Flux response gives high visual agreement with Gspert code
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Vertical growth rate predicted within 3Hz deviation from Gspert

• Neural net captures most trends, some scatter in 
predictions. 

• Again, worst predictions occur during dynamic 
oscillatory periods of shot. (5% worst predictions 
all within 200ms of shot start/end)

• RMSE: growth rate=3Hz, dzx/dI = 2.7cm/kA. 

Pertnet

GSpert



Next steps
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Conclusion & next steps

J.T. Wai, M.D. Boyer, E. Kolemen, “Neural net modeling 
of equilibria in NSTX-U”, submitted to Nuclear Fusion, 
2022. 
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• Successfully demonstrated reliability and performance 
of equilibrium and plasma response neural networks. 

• Couple these to profile predictors for fast integrated 
transport+shape simulation capabilities.

• Integrate into optimal planning of feedforward coil 
current trajectories to achieve a target shape evolution. 

• Online shape control updates and vertical stability 
monitoring – when NSTXU is ready!


