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Equilibrium geometry is difficult to resolve in advanced

divertors

Standard Perfect

Snowflake

e Some advanced divertors (e.g. snowflake, x-divertor,

nearby-double-null) infroduce another x-point into the
divertor region.

* Atthe x-point, Vip = B, = 0 = there is a large region of F——
low magnetic field. Equilibrium geometry is sensitive to Plus
external measurements and variations from the Grad-
Shafranov equation.

Snowflake
Minus

e Divertor heat flux q, measured from infrared-

thermography (IRTV) diagnostic inconsistent with
equilibrium.
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IRTV diagnostic can be used to resolve inconsistencies

in the snowflake divertor equilibrium

e Snowflake plus: secondary x-point lies in the private flux
region. Scrape-off layer (SOL) fieldlines directly

infersect divertor in 2 locations = 2 heat flux peaks. . . FSJ%;CSZZS‘Z@”W "
N \\\ (X OuterStrikeF:)oint
e Snowflake minus: secondary x-point lies in the SOL. NN NSty
Fieldlines directly intersect divertor in 3 locations = 3 100 -
heat flux peaks. £
e Equilibrium vs. IRTV inconsistencies 120f
—  Strike point location mismatch
— Occasionally, incorrect # of heat flux peaks for the
snowflake type 140
e |RTV used to improve equilibrium R (cm)
—  Useful for control (feedback on x-point locations EFITO1 indicates SFD*, but 3 heat flux
[Kolemen, 2018])

o ) peaks (SFD-)
— Geometry sensitive to unmeasured divertor currents.

Potential use as diagnostic for bootstrap current.
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Algorithm developed to infer SFD x-point locations from

IRTV characteristics

. - ) Measure mismatch
e Snowflake minus: 4 quantities are derived from heat

flux profile: 3 strike points + flux coordinate of Use IRTV to measlre strike points
. and ;. Compare to equilibrium
secondary x-point ¥,,,, (from EFIT).

v

Identify x-points

e Used to match 4 degrees of freedom in x-points: (r,z)

at 2 x-points
Use algorithn"! to upglgte the x-point
e “True” strike points identified from fit to Eich profile SRRl lgesersS
[Eich, 2013]
q(§):q—0-exp<<i)2— 5 )-erfc(i— 5 ) ¢
2 2Xq Ag fo 22 5 fe Solve for new equilibrium
§=8—8g

Solve free boundary Grad-
Shafranov equation (using Toksys
.. . ) [Walker, 2015]) with hard

available. See [Wai, 2020] for details. |

~4-5 iterations to converge
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Ovutboard power fraction identifies midplane radial

coordinate for the secondary separatrix

e At midplane, exponentially decaying heat flux

e Midplane radius of secondary separatrix
Tmid xp2 F€l0tEd fO the power splitfing in the 2
outboard SFD-minus heat peaks.

* However, first need to measure the A, o for

power splitting which is 2-3x larger than )\q
from Eich. [Maurizio, 2018]

. eff
mzd,peake—r/)\q dr

oo
fs 4= P4 - f"'mid,mp2 91 — — e_Tmid,xPZ/Afo
p P2 + P4 fooo qTid,peake—r/AZ dr
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A, et Measured by fitting power fraction to multiple

equilbria

Snowflake Minus Power Splitting

®  Power fraction f;,4 measured from the divertor heat
flux profile. At each peak, Py, = [ 2nR(s)q(s)ds

® Secondary separatrix position 7y ., Measured from
EFIT equilibrium.

I
®
T

® Datais selected from subset of shots that have wide
range of x-point separation and fit to:

o
o
T

I
~
T

. ('rmid,a:pQ ‘|‘€)/>\2ff

SP4 Power Fraction, P4 / (P2 + P4)

fsp4 — €

1 1 1 1 1 1 1

-6 -4 -2 0 2 4 6 8

o
o

Midplane separatrix separation, I'yiq xp2 | € [mm]

® ¢is afitting parameter to account for systematic bias in
the reconstruction

®  Agefr= 5.6mm versus A= 1.9mm from Eich fit
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Algorithm converges and simulations match heat profile

155354: 3720ms

SP1
® Simple assumptions and geometry used to update

x-point positions. See [Wai, 2020] for derivation.

Ni_
Aapy = sign({€1, Nop1)) €11 Napt + sign(€3, Bnp1))|63| Eupt
Amﬁ2 s Sigﬂ(<54, Nmp2>)|€Z|Na¢p2 + foTsplitExp2 1.4 - E"::I RTV wraint Spa
+ constrain
1‘ 1.‘1 1.‘2 1.5 1.‘4
R[m]
®  Example: EFITO1 equilibrium indicates SFD-plus, but 3 206 SP1| | " sp2,  sPa, | IRTV 1
heat flux peaks indicates SFD-minus. ] | EFIT
<04 | EFIT+IRTV -
® Converged equilibrium is SFD-minus ) I
202 |
e Simulated heat flux, obtained using SFD power flux %g A
model [Vail, 2019], agrees with IRTV. ° 140 - 160 180
S[cm)]
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Preliminary: bootstrap current decreases ~16% to match

new equilibrium shape.

Current Density

KEFIT

e Unmeasured divertor currents can alter divertor 8| KEFIT + IRTV
flux surfaces significantly [Ryutov, 2010] =
potential to use change in flux surfaces from
IRTV to infer these currents.

J, IMA/m 2]

* SFD algorithm performed on kinetic equilibria os | | 15e854:5%0
obtained from CAKE [Xing, 2020]. *Normalized Flux 11, 1
L Pre“min(]ry: 16% reduction in edge current due __Edge Current Regression
to shape change. o
— Need to incorporate algorithm directly into kinetic od Lol
solvers (vice TokSys) £ 03
— Not all available diagnostics used for fit. < o2
—. 0.1
* Edge current reduction linearly correlated with g o
. . — -0.1
change in x-poinfs. T,
-0.3 f‘\-\ Snow Minus: R2=0.93
04" Snow Plus: R%=0.85
-D 04 02 0 02 04 06
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IRTV constraint must be balanced against other

diagnostics

® Algorithm can be used as a virtual diagnostic for x- 15 155354: 3720ms
< >

point positions. However, must balance this against SED+ | SED-
other equilibrium diagnostics.

Y. errors

—  Oiriginal eq is SFD-plus, but IRTV shows 3 peaks (SFD-
(Axp driven to zero)

Axp [ecm]
®* Filting tfrade-off example: 155354 10 1
minus)
—  Fifting weight is applied to x-point constraint
—  wit=0.45, equilibrium prediction is SFD-minus. B-probe J— |
error increased by 30%. ABprobe [50Gs]

—  wit=1.0, Axp driven to zero. Strike point and flux errors \
concurrently become zero. But B-probe error has \\
increased by 2.5x 0 s s s :

0 0.2 0.4 0.6 0.8 1
IRTV weight
B-probe
Summed mismatch in x- Summed mismatch in strike Flux coordinate of the Summed errors in magnetic
point positions, desired vs. point positions, IRTV vs secondary separatrix, probes, measured vs. fit

_D equilibrium equilibrium desired vs. equilibrium
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Future Work

e Incorporate algorithm directly into EFIT / kinetic EFIT
codes for higher confidence in edge current
modifications

e DIlI-D may develop real-time 1D heat flux capabilities =
use for advanced divertor control.
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