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• Motivation for advanced divertors
• Heat flux spreading

• Dynamics model
• Output model
• NSTX: Linear Quadratic Integral (LQI) control of the snowflake divertor
• ITER: Model predictive control (MPC) of the X-divertor
• DIII-D: Improving snowflake reconstruction with IRTV diagnostic
• NSTX: Optimization of the cryopump location for snowflakes



Advanced magnetic field configurations can reduce power flux to 
the divertors 
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• Divertor heat load is a design challenge for high performance tokamaks
• ITER ~ 10 MW/m^2

• Several ideas to reduce heat load
• Minimize divertor plate angle (but > 1 deg)
• Strike point sweeping
• Advanced divertor configurations 

• Snowflake divertor
• x divertor
• super x divertor

Iter.org

ITER Standard Divertor ITER X Divertor



The circuit equation applied to each conductor gives the state-
space model dynamics

4J.T. Wai / 2019 Workshop on MHD Stability Control / New York, NY10/28/19

• Circuit Model

Flux change due to induced currents. Flux change due to plasma motion. Computed via TokSys and [1]

• State Space Form

[1] A.S. Welander et. Al, “Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design,” FST, V47:3, 2005.



The linearized output equation is determined by a derivative 
expansion of the absolute error
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• Controlled outputs

• Write the output model in the linearized frame (matches dynamics).

• Reference trajectory defined by setting error to zero

• X-Point response

[1] A.S. Welander et. Al, “Nonrigid, Linear Plasma Response Model Based on Perturbed Equilibria for Axisymmetric Tokamak Control Design,” FST, V47:3, 2005.

Determined by [1]. 
Linearization to G-S. 



Since there is a large separation of timescales, current & shape 
control can be designed separately from vertical stabilization
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• Superconducting coil response time (s)   vs.    resistive wall decay time (ms)
• Simulation: negate eigval, exclude use of vs1/vs2 as actuators
• 3 control objectives
• Minimize flux error between control pts and plasma boundary
• Reference tracking of x-point positions
• (ITER) Maintain Ip

Vertical Stabilization

Plasma in Tokamak
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• Decoupled control scheme: 
• Linear quadratic integral (LQI) for  divertor variables
• Proportional control on isoflux shape

• Reference tracking

• Final feedback control law

• Kp and KI from LQR of augmented system

NSTXU: Snowflake divertor control on NSTXU can be implemented with a 
decoupled LQI, proportional controller – P.J. Vail [1]
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[1] P.J. Vail et Al., “Design and simulation of the snowflake divertor control for NSTX–u,” PPCF, V61:3, 2019



NSTXU: Robust snowflake divertor control requires the use of 
online model updates – P.J. Vail [1]
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• Simulation shows high degree of control over snowflake configuration
• Highlights need for online model changes (LTV)
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[1] P.J. Vail et Al., “Design and simulation of the snowflake divertor control for NSTX–u,” PPCF, V61:3, 2019



ITER: Out of all advanced divertor configurations, only the X-
divertor is physically achievable
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• Divertor configurations on ITER
• Snowflake divertor – exceeds coil currents [1]
• Super X divertor – geometry changes [2]
• X divertor possible [2]

ITER Standard Divertor ITER X Divertor
[1] ITER snowflake 

equilibria 

[1] K. Lackner, H. Zohm, “Calculation of Realistic Snowflake Equilibria for Next-Step Devices”, FST, V63:1, 2013.       [2] B. Covele et Al., “An exploration of advanced x-divertor scenarios on ITER,” NF, V54:7, 2014.



ITER: Physical differences on ITER necessitate a more integrated 
control approach (MPC)
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• Poloidal field coils are far away from the plasma, flux effects are more coupled
• No separate set of divertor coils
• Easy to run into coil current constraints
• System is not strictly controllable
• 12 PF coils but only 11 independent coil circuits 
• 31 shape pts + I" + Ψ$%& + 6 divertor variables = 39 outputs
• Plus constraint set (35 additional variables)
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• Quadratic cost on the output errors and control actuation

• Use dynamics model to predict future outputs

• After substitution, obtain convex cost function in standard quadratic-program form
• Solve via mpcqpsolver in MATLAB

ITER: MPC optimizes the control inputs over a finite horizon, 
subject to constraints
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ITER: MPC is computationally intensive, but is expected to be 
feasible for real-time
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• MPC can be fast (3-7 ms) [1], could be used in real-time
• Several tricks for speeding up simulation
• Truncated prediction model

• Neglects vacuum vessel currents
• (N x 13) versus (N x 163)

• Move blocking
• Reduces the number of optimization variables
• Geometrically scaling block sizes

Optimal
Move Blocked

[1] S. Gerksic et Al., “Model predictive control of ITER plasma current and shape using singular-value decomposition,” FED, V129:1, 2018



ITER: X-divertor can be achieved while satisfying constraint set, Ip = 
10 MA
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ITER: large changes to the secondary x-point location can be realized with 
minimal impact on the primary x-point and shape
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DIII-D: the Infrared TV diagnostic can be used to identify snowflake 
x-points and better constrain the equilibrium reconstruction – P.J. Vail
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• IRTV diagnostic measures heat flux on the divertor plates
• Predicted heat flux of the snowflake equilibrium reconstruction does not 

match IRTV
• Opportunity for IRTV to provide additional info to reconstruction 

algorithm

• Approach
• Analytical model [1]: x point locations --> heat flux
• ML regression tree:  heat flux --> x point locations
• Use predicted x-points to constrain equilibria

• Constrained equilibria match measured heat flux better
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[1] P.J. Vail et Al., “Optimization of the snowflake divertor for power and particle exhaust on NSTX-U,” NME, V19, 2019.



• ML Predictions
• 17 shots with 25 time slices each
• ~ 1cm error on the testing data set

• How do the profiles in the heat-flux constrained 
equilibrium differ?

• ~20% difference in edge current. Further studies to 
perform this analysis across the database and quantify.

DIII-D: heat-flux-constrained equilibria reveals 20% difference in 
edge currents– P.J. Vail
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NSTXU: for overall divertor performance, the snowflake divertor must work 
well with the particle exhaust mechanism- P.J. Vail
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• Divertor functions: power exhaust  AND particle exhaust
• Does the snowflake divertor work well with conventional particle exhaust (cryopump)?
• How to optimally place cryopump?

• Analytical model for snowflake power flux
• Diffusion eqn solved in 2 separate domains, characterizes better than a standard divertor with large flux expansion

[1] P.J. Vail et Al., “Optimization of the snowflake divertor for power and particle exhaust on NSTX-U,” NME, V19, 2019.



NSTXU: An optimal cryopump location allows for full power and 
particle exhaust over a range of snowflakes- P.J. Vail [1]

18
[3] M. Ono et Al., “Exploration of spherical torus physics in the NSTX device,” NF, V40 (2000)

• Heat flux profile directly related to particle flux profile [2]

• Assumptions
• 24 kL/s volumetric pump rate for liquid helium cooled 

cryopump
• 10 MW (20 Torr-L/s) of neutral beam heating
• Gives inlet pressure condition[1,3]: P > 0.83 mTorr

[2] T. Lunt, et Al., “Numerical study of potential heat flux mitigation effects in the TCV snowflake divertor,” PPCF, V58, 2016 
[1] P.J. Vail et Al., “Optimization of the snowflake divertor for power and particle exhaust on NSTX-U,” NME, V19, 2019.



Summary
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• Developing multiple analysis and control tools to improve performance of advanced divertor configurations

• Snowflake divertor control on NSTX can be achieved with high degree of control. Highlights need for online 
model changes. 

• Model predictive control on ITER 
• large changes in the the divertor field geometry can be obtained within the limits of physical constraints
• It may be possible to create and test the x-divertor on ITER

• IRTV can be used as a diagnostic to improve snowflake equilibrium reconstructions on DIII-D

• Improved UEDGE simulations guide the design of optimal cryopump locations for NSTXU snowflakes

• Future work
• Perform larger analyses of IRTV edge current predictions
• Implement online model changes for NSTX in order to control ramp-up scenarios (M.D. Boyer, P.J. Vail)


