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Abstract
Neural networks (NNs) offer a path towards synthesizing and interpreting data on faster
timescales than traditional physics-informed computational models. In this work we develop
two NNs relevant to equilibrium and shape control modeling, which are part of a suite of tools
being developed for the National Spherical Torus Experiment-Upgrade for fast prediction,
optimization, and visualization of plasma scenarios. The networks include Eqnet, a
free-boundary equilibrium solver trained on the EFIT01 (Equilibrium FITtting 01)
reconstruction algorithm, and Pertnet, which is trained on the Gspert code and predicts the
non-rigid plasma response, a nonlinear term that arises in shape control modeling. The NNs
are trained with different combinations of inputs and outputs in order to offer flexibility in use
cases. In particular, Eqnet can use magnetic diagnostics as inputs and act as an EFIT-like
reconstruction algorithm, or, by using pressure and current profile information the NN can act
as a forward Grad–Shafranov equilibrium solver. This forward-mode version is envisioned to
be implemented in the suite of tools for simulation of plasma scenarios. The
reconstruction-mode version gives some performance improvements compared to the online
reconstruction code real-time EFIT, especially when vessel eddy currents are significant. We
report strong performance for all NNs indicating that the models could reliably be used within
closed-loop simulations or other applications. Some limitations are discussed.

Keywords: neural net, equilibrium, shape control

(Some figures may appear in colour only in the online journal)

1. Introduction

In tokamaks, a critical aspect of achieving high performance
plasma operation and maximizing scientific exploration is the
development of fast and reliable model predictions of the
plasma behavior. Fast model predictions are often a prereq-
uisite to implementing real-time control algorithms. Addition-
ally, if these are not available in real-time, but on a slightly
slower timescale, they can be used by physics operators to
inform decisions between shots. Machine learning is a tool
that is gaining increasing usage in the nuclear fusion com-
munity and can be useful in this type of situation where it
is desirable to quickly synthesize data into interpretable out-
puts. Some examples include its usage in profile predictions
[1–3], turbulent transport [4], identifying scalings laws [5, 6],
and predicting instabilities and disruptions [7–13].

∗ Author to whom any correspondence should be addressed.

In this work, we present two neural nets (NNs) Eqnet
and Pertnet developed for the National Spherical Torus
Experiment-Upgrade (NSTX-U) tokamak which are relevant
to equilibrium and shape control modeling. Along with recent
modeling of neutral beam heating [14] and electron profiles
[3], these NNs are part of a suite of tools being developed for
fast prediction, optimization, and visualization of plasma sce-
narios. Closed-loop simulations of a plasma discharge are gen-
erally too slow for usage between shots due to time-intensive
steps of repeatedly solving the free-boundary Grad–Shafranov
equation and linearizing around the given equilibrium. The
NNs here were developed to perform these two time-intensive
tasks as a step towards fast simulation and eventually, numer-
ical optimization of scenarios. Additionally, we explore and
report on additional modes of operation of the networks that
have alternative applications3.

3 Code is available github.com/PlasmaControl/nstxu-nns/.
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Figure 1. Diagram of the data inputs and outputs that were used to
train different versions of Eqnet. The forward modes solve
equation (1) directly whereas the reconstruction modes are a
diagnostic best-fit solution. The control modes predict extracted
shaping parameters instead of the flux surfaces.

Section 2 introduces Eqnet, a NN-based architecture trained
to predict the free-boundary plasma equilibrium based on
various sets of inputs. In this work, we distinguish between
several modes of operation (forward, forward-control, recon-
struction, reconstruction-control) as diagrammed in figure 1.
The forward mode predicts the equilibrium flux surfaces
using the coil currents and plasma profiles as inputs. In
contrast the forward-control mode directly predicts control-
relevant shaping parameters that are normally derived from
the flux surfaces, including quantities such as the x-point
locations, elongation, and outer gap distance. Similarly the
reconstruction and reconstruction-control modes predict the
same outputs, but use diagnostic information such as magnetic
probes as inputs to the NN. Previous NN equilibrium solvers
[15–22] were developed in the spirit of reconstruction-control
mode—mapping diagnostics to shaping parameters—with
some exceptions such as [23] which reconstructs flux surfaces
and [24] which is a fixed-boundary solver.

For control simulations, another important calculation is
‘linearizing the equilibrium’ which includes obtaining the
non-rigid plasma response, how current in the plasma shifts
and redistributes in response to applied fields from the
poloidal field (PF) coils. It is also common to model the
plasma response to the normalized internal inductance li and
plasma poloidal beta βp. This effect is nonlinear, equilibrium-
dependent, and is addressed by codes such as Gspert/Gsupdate
[25, 26] and Create-L/NL [27, 28]. In section 3 we introduce
Pertnet, a NN-based architecture for identifying the plasma
response that was trained on the Gspert code.

Eqnet and Pertnet were developed for the simulation goals
stated above, although they have been trained to be flexible in
inputs and outputs in order to demonstrate potential relevance
to a variety of tasks. (To be clear, it is not a single model where
inputs and outputs are toggled on and off, but multiple versions
of the model trained with different inputs and outputs.) More
specifically, some of the motivating applications are:

• A fast plasma simulator for between shot scenario design
(Eqnet and Pertnet): presently available plasma ‘flight
simulators’ are not fast enough to run between shots, not to
mention performing numerical optimization over the sim-
ulations. The key tasks in a flight simulator are solving for
equilibria, and evolving currents and profiles according
to the shape control model and plasma transport. Future
work will focus on integrating Eqnet and Pertnet with
NN-based profile evolution [3] in order to develop this
simulator.

• Increased availability and reliability of during-shot equi-
librium reconstruction (Eqnet): NSTX-U relies on real-
time EFIT (RTEFIT) for shape control measurements, but
RTEFIT is not available until roughly 100–150 ms into the
shot when the plasma current is sufficiently high. A work-
around method uses an additional gap controller [29] dur-
ing this early time, but this adds complexity to the system
in tuning the additional controller and dealing with con-
troller transfer. A simpler method would be to use Eqnet
as a backup for when RTEFIT is unavailable, since the
reconstruction mode of Eqnet can use the same inputs and
outputs as RTEFIT. Additionally, RTEFIT suffers inaccu-
racies when vessel currents are large or dynamic plasma
changes lead to insufficient convergence time, which can
be improved by using Eqnet (see section 2.5.4).

• Vertical growth rate monitoring (Pertnet): one of the out-
puts that can be obtained from Pertnet is the growth rate
of the plasma vertical instability. Due to hardware actua-
tor constraints, any individual tokamak has a limit on the
growth rate that can be controlled before the plasma is
lost to a wall collision, which was a difficulty for NSTX-
U since it is a spherical tokamak with highly elongated
plasmas. One possibility is to use Pertnet to monitor the
growth rate in real-time so that corrective actions can be
taken before an instability limit is reached.

• Online updates to the shape controller (Pertnet): in most
current tokamak shape control algorithms, feedback gains
are calculated offline based on a single reference lineariza-
tion, and these parameters are used for the entire discharge
and across discharges. Using Pertnet, the equilibrium-
dependent response predictions could be served to the
controller rapidly (<1 ms) during the shot to optimize
controller performance.

Development of these tasks will be the subject of future
work. The rest of this paper is divided as follows. Section 2
introduces Eqnet including the data structure, model architec-
ture, prediction results, and a simple application problem of
using Eqnet to design a novel equilibrium. Section 3 describes

2



Nucl. Fusion 62 (2022) 086042 J.T. Wai et al

Figure 2. Regression plots of the Eqnet predictions vs EFIT01-measured parameters including: lower x-point position (Rxlo, Zxlo), plasma
outer midplane radius ROMP, upper control segment gap (see figure 7), vertical position of the current centroid Zcurr, and plasma elongation.
The reconstruction mode performs slightly better than forward mode as determined by R2 coefficient.

Pertnet, including the nonrigid plasma response model and rel-
evant background, NN architecture, and performance results.

2. Eqnet

2.1. Problem statement

The goal of this NN is to identify the plasma equilib-
rium ψ(R, Z) which is the solution to the free-boundary
Grad–Shafranov equation [30, 31]:

Δ∗ψ = −μ0RJφ

Jφ = Jpla
φ + Jext

φ

Jpla
φ = RP′(ψ) +

FF′(ψ)
μ0R

. (1)

Here ψ is the poloidal flux, Jφ is the toroidal current den-
sity, P(ψ) is the pressure profile and F(ψ) :=RBφ is related to
the poloidal current. Jext

φ is the current density in the shaping
coils and surrounding vacuum vessel structures, and serves as
a boundary condition for the free-boundary problem. Analyt-
ical solutions are known for only a limited number of cases

and in general equation (1) must be solved numerically in an
iterative process.

2.2. Data inputs and outputs

The ground truth training data is composed of equilibria gener-
ated from the EFIT01 reconstruction algorithm [32, 33] during
the 2015–2016 NSTX-U campaign. EFIT01 is a magnetics-
only equilibrium reconstruction code which is run automat-
ically after each shot and thus offers a sizeable database of
samples (∼25 000 equilibria, spaced 5–10 ms apart, from 220
shots). One limitation of magnetics-only reconstructions is
that the pressure and current profiles are not well-constrained.
On NSTX-U there does exist a small number of discharges
for which kinetic equilibria exist (pressure and current con-
strained by Thomson and motional-Stark-effect diagnostic
data). However, EFIT01 is sufficiently accurate for bound-
ary and shape control purposes and its usage is beneficial due
to the higher number of samples. It is known that EFIT01
is sufficiently accurate because the NSTX-U shape controller
internally uses RTEFIT, and EFIT01 is more accurate than
RTEFIT. These two codes are mostly identical but without
real-time constraints EFIT01 can run for more iterations until
convergence.

3
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Figure 3. A scree test for two representative variables. The number
of components is verified to be larger than the ‘elbow’ location.

As mentioned, the data inputs and outputs vary depending
on the mode of operation. In the forward mode, the NN maps
the coil currents, vacuum vessel currents, P′ and FF′ profiles to
the equilibrium flux map. This mode is useful for simulations
and optimizing coil current trajectories, since most of these
data inputs are readily available from the shape control model
(described in more detail in section 3.1). The shape control
model integrates a state vector I consisting of the plasma, coil,
and vessel currents and thus all the current sources are avail-
able as inputs at each time step. Often, additional states βp and
li are included to track information about the pressure and cur-
rent (li corresponds with the peaked-ness of the plasma current
profile). These two scalars are almost information-equivalent
to knowing the EFIT01 P′ and FF′ profiles, which by design
consist of 1 and 3 basis functions respectively. (We train with
the P′ and FF′ profiles instead of βp, li for flexibility in use
cases, since equation (1) is the standard formulation.)

The output of the model is the equilibrium flux values at
all grid locations ψg, although for better data compression, the

NN actually outputs only the plasma flux ψpla
g . The total flux is

the sum of the plasma flux and flux from the external sources.

ψg = ψpla
g + ψext

g

ψext
g = MgcIc + MgvIv. (2)

Here, Mgc and Mgv are the mutual inductance matrices
between each grid point and the coil and vessel elements
respectively, and Ic and Iv are the currents in the coil and ves-
sel elements. The advantage of predicting the plasma flux ψpla

g

is that it has less spatial variation than the total flux leading to
better principal component analysis (PCA) data compression
and higher accuracy in the final solution. Since the quantities
that constitute ψext

g are known, there is no disadvantage to only

predicting ψpla
g .

A bit of care must be taken when considering Eqnet’s
reconstruction version, since in most reconstruction applica-
tions the algorithm would only have access to measurements
of the currents Ic and Iv. This can have a moderate impact:
for example, on NSTX the relative error difference between

Figure 4. Dimensionality reduction of the Eqnet dataset using PCA.
The outlined boxes indicate 99.5% captured variance and the
number of components used for each variable.

measured and fitted currents was 0.56% and 4.0% for coil cur-
rents and vessel currents respectively [33]. When training the
reconstruction version, we use the measured values of Ic and
Iv in equation (2). In order to still obtain the correct total flux
prediction, the NN is trained to predict the plasma flux plus
any flux error due to the measurement process. This model is
trained using 75 B-probes, 55 flux loops, and 35 vessel cur-
rent signals and we report strong accuracy in the reconstruc-
tion, slightly outperforming the forward mode (figure 2) and
RTEFIT (section 2.5.4).

The control-oriented modes do not predict the flux but
instead predict parameters that are normally derived from
the equilibrium. These include: the plasma minor and major
radius, elongation, gap sizes of several control segments, posi-
tions of the upper and lower x-points, and position of the cur-
rent centroid. The advantage of this mode is that it bypasses
computational steps such locating the touch-point/x-point and
tracing the boundary. A shape controller can provide feedback
based directly on the NN outputs. A potential downside to this
mode is that the outputs are pre-determined, offering less flex-
ibility. If, for example, the position of the shape control seg-
ments are adjusted, the NN would have to be retrained with the
new control segments.

2.3. Data processing

The 220-shot dataset is first organized chronologically by shot
number, with an average ∼100 samples per shot. The chrono-
logically latest 10% of shots are set aside for testing. All of
the shot numbers and examples referenced in this manuscript
are from this test data set. The remaining 90% of shots are
later divided and used for training and validation which is
described in more detail in section 2.4. This data split proce-
dure is used to mimic the standard experimental application
in which a model would be trained on all available data and
then need to perform adequately in a future experiment. Ran-
dom splitting would likely over-estimate the NN capabilities
since samples are highly correlated within a shot, and to a
lesser-degree, among nearby shots.

Each of the target and predictor variables is dimensionally
reduced by performing PCA on the training set. The number

4
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Figure 5. Model architecture for Eqnet and Pertnet including data processing steps. The core of the model is an ensemble of fully-connected
networks.

Figure 6. Hyperparameter grid scans used to identify the best performing Eqnet model. The loss value is computed using the validation
dataset. The landscape is fairly convex making it straightforward to identify good parameter combinations.

of components kept is selected to achieve 99.5% captured vari-
ance, and is summarized for each variable in figure 4. Another
rule-of-thumb sometimes used to select the number of com-
ponents is the scree test shown in figure 3 for some represen-
tative signals. This test plots the singular values of the data
and selects a minimum number of components based on the
location of the ‘elbow’ where the values begin to level off.
We verify that the number of components selected is always
greater than this point of maximum curvature.

It should be noted that we do not perform any selection
process for including samples as has been done in some pre-
vious NN solvers, such as restricting to the flattop portion of
the discharge. We include all available samples ranging from
t = 30 ms near the end of breakdown phase and concluding
at shot termination (end of rampdown, disruption, and/or loss
of control). Indeed, a sizeable fraction of shots terminate off-
normal (>30% terminate within 0.6 s, while the target pulse
length is generally 1–2 s) which is a significant contributor to
the range and variance in the data, and important for learning.

In order to adequately learn non-flattop equilibria, one step

that proved to be necessary for good performance was per-

forming a PCA ‘merging’ procedure on the target variableψpla
g .

This was done by separating the dataset into rampup, flattop,

and rampdown/pre-disruption phases of the discharge, per-

forming PCA on each of these phases separately, and combin-

ing the PCA components together to form a single basis. The

motivation is that the flattop phase tends to be over-represented

because Ip is constant and the flux surfaces and plasma posi-

tion are mostly constant. In contrast, much of the important

variation occurs during rampup and rampdown/pre-disruption.

Naively using PCA on the combined data did not represent the

rampup or rampdown equilibria well, as determined by visual

inspection of the projected flux surfaces. This problem is not

fixed by oversampling the rampup and rampdown equilibria,

likely because these samples have lower Ip and therefore lower
magnitude of ψpla

g so they still do not sufficiently contribute to

the variance in the data matrix.

5
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Figure 7. Equilibrium flux surfaces for several test shots as determined by EFIT01 and the Eqnet NN. The boundary contour is shown in
bold. Also shown are control segments (blue), magnetic axis (black diamond), and x-points.

Table 1. Prediction errors for several models computed at the 50th and 90th percentiles. Most errors are less than 1 cm. Zeroing out a
magnetic probe results in an approximate doubling of errors.

Prediction errors

Model Percentile Rx,lo (mm) Zx,lo (mm) Rcur (mm) Zcur (mm) ROMP (mm) Gap,up (mm) Gap,lo (mm)

Forward 50 1.7 4.6 5.9 2.4 4.4 4.2 3.2
Reconstruction 50 1.6 2.9 5.7 2.4 3.5 2.5 3.5
Dead B-probe 50 5.8 8.9 10.4 8.3 8.3 10.4 12.8

Forward 90 6.0 11.1 15.9 10.3 15.7 12.2 15.2
Reconstruction 90 5.3 9.6 13.8 6.7 12.1 7.8 10.0
Dead B-probe 90 11.6 17.2 22.4 17.9 27.0 21.2 29.8

The PCA-merging step is performed as follows: suppose we
have a data matrix X of dimensions nfeatures × nsamples with sam-
ple mean μ, and that we have performed PCA on X and have
a set of principal components U and coefficients W. We recall
that the data matrix can be projected from the components and
coefficients as

X = UW + μ. (3)

Thus for two (truncated) PCA projections X1 = U1W1 +
μ1 and X2 = U2W2 + μ2, the combined projection [X1X2] is
within the span of the combined components and means
Ū := [U1 U2 μ1 μ2]. Thus we can write

[X1 X2] = [U1 U2 μ1 μ2]︸ ︷︷ ︸
Ū

W̄ (4)

for some set of weights W̄, or a version with nonzero mean
which is in the same PCA-like form as equation (3).

[X1 X2] = [U1 U2 μ1 μ2]︸ ︷︷ ︸
Ū

W̄ + μ∗

μ∗ = (μ1 + μ2)/2. (5)

Equation (5) is not a valid PCA projection because the
columns of Ū are not orthogonal, but we can obtain a set
of orthogonal components U∗ by performing, for example, a
singular value decomposition of Ū. The merged coefficients
are then W∗ = U∗T([X1 X2] − μ∗). This simple preprocessing
step proved to be sufficient for compressing data across a wide
range of samples. The final result compresses the ψpla

g grid of
size [65 × 65] to just ten PCA coefficients.

Figure 4 summarizes data compression results for the vari-
ous inputs and outputs. For the flux values, significant dimen-
sionality reduction is achieved. As mentioned, the P′ and FF′

profiles consist of 1 and 3 basis functions respectively, which
is captured by this mode decomposition. The highest dimen-
sional inputs are related to the vessel currents and B-probe
diagnostics. After dimensionality reduction, we normalize the
inputs to have zero mean and unit variance, to arrive at the NN
inputs. The standardization and PCA decompositions are then
inverted to map NN outputs to physical outputs.

2.4. Model architecture and hyperparameter tuning

The model architecture including data processing steps is
shown in figure 5. The core of the model uses fully-connected
artificial neural nets which are created and trained in PyTorch

6
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Figure 8. Time traces of several geometric quantities for test dataset shot 204125, as measured by EFIT01 and predicted by Eqnet. The
lower and upper gaps are the intersection of the plasma boundary with the control segments as shown in figure 7. The shaded red region
represents ±3 standard deviations between the predictions of NN ensemble members.

Figure 9. Comparison of Eqnet and RTEFIT. The RTEFIT error and 5 ms phase shift in (a) and (b) is due to dynamic events inducing strong
vessel eddy currents. Eqnet has learned to compensate for this. The RTEFIT mismatch in (c) and (d) is due to insufficient convergence.

with the Adam optimizer. We use a small (five-member)
ensemble of NNs and average their predictions, before inverse-
transforming the results back to the original data-space. Recall
that 10% of shots are reserved for testing with the remaining
90% shots going to training and validation. Each NN ensem-
ble member is trained on a random subset (90%) of shots from
within this training/validation set (i.e. an individual NN will
see 90% of the 90%). This ensemble method is used for two

reasons—first, to increase the robustness of the final predic-
tion, since the various applications tend to need stable pre-
dictions, and second, as a method for determining statistical
properties of the predictions. (This ensemble method is simi-
lar to five-fold cross-validation, with each ensemble member
representing one iteration of the cross-validation procedure.)
As will be shown in section 2.5.3, the agreement between
ensemble members can be a useful tool for gauging uncertainty

7
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Figure 10. Equilibrium designed with fminsearch + Eqnet, by
adjusting the coil currents in order to match the target boundary. The
target shape is an elongated κ = 1.95 LSN equilibrium.

in the prediction, and actually does correlate with underlying
uncertainty in the equilibrium reconstruction.

The network hyperparameters are chosen by performing
scans of the number of hidden layers, hidden layer size,
dropout fraction, optimizer learn rate, batch size, and nonlin-
earity activation function. Results of this procedure are shown
in figure 6. The hyperparameter landscape is fairly convex,
making it straightforward to identify a suitable parameter com-
bination. We note that the NN tends to perform better with
larger network sizes (depth and breadth), zero dropout, and
small batch sizes. We also note a jump in performance when
using the exponential linear unit (ELU) activation function as
opposed to the standard ReLU.

2.5. Performance

2.5.1. Model timing. A key motivation for this work is the
computational speed of NNs. The time to train an individ-
ual NN for 300 epochs is roughly 8–10 h on PPPL’s por-
tal cluster (single core AMD Opteron 6136 2.4 GHz CPU).
More important is the inference time which was measured
on a Macbook Pro 3.5 GHz Dual-Core Intel i7 CPU and
ranges from 810 μs to 940 μs depending on the particular
NN version. This was computed in Python and represents the
inference time for a single NN, since it would be natural to
parallelize the inference of each NN ensemble member. This

is already fast enough to support real-time operation (approx-
imately 1 ms, which is also approximately the time needed
by RTEFIT to complete a cycle), although additional speed
increases are expected for when the model is translated into
a compiled programming language. Therefore we expect any
real-time applications could be supported without issue.

2.5.2. General performance. Figure 7 shows some represen-
tative results for NN flux surface predictions (forward-mode)
taken from the test dataset. Also depicted are the x-points,
magnetic axis, and control segments used in computing the
upper and lower gap. The four samples shown represent dif-
ferent categories of equilibrium shapes such as limited plasma
produced during rampup, lower single-null (LSN) during flat-
top, upper single-null during flattop, and a LSN from a dis-
rupting plasma. In the first three cases the flux surfaces are
mostly indistinguishable by eye at this scale. One does observe
errors in the disruption sample. Since this type of event is off-
normal it is less well-represented in the training data. This
suggests that for less-represented samples or shapes that have
not yet been explored on NSTX-U (e.g. negative triangular-
ity), there is room for future improvement by obtaining more
experimental data or supplementing with synthetic data.

A regression test of shaping parameters is shown in figure 2
for the control-oriented NNs. We observe that the reconstruc-
tion mode outperforms the forward mode slightly in most
variables as measured by the R2 coefficient. (R2 = 1 is per-
fect prediction.) A possible explanation is that the reconstruc-
tion mode has significantly more NN inputs to learn from,
including highly localized information from the diagnostics.
The hardest variables to predict are the outer midplane radius
and current centroid position with R2 values 0.820/0.929 and
0.861/0.943 respectively. As another quantitative measure of
accuracy we report absolute prediction error values at the 50th
(median) and 90th percentile levels in table 1. For most geo-
metric features the median errors are generally only a few mm,
and the 90th percentile errors are about 1 cm.

While the large majority of samples are predicted accu-
rately, it is true that some samples have errors of multiple
cm which is high for shape control. The time trace predic-
tions shown in figure 8 give some qualifying insight. From
the ROMP and Zcur plots we observe multiple oscillations in
the signals, which tend to occur very early in the shot (rapidly
changing conditions during current rampup) or near the end
of a shot (from disruption, loss of control, or rapidly varying
conditions during rampdown). In fact, for errors �3 cm, 68%
of bad NN predictions occur during the first or last 100 ms
of the shot, and 100% within the first or last 200 ms. These
dynamic features are representative of the NSTX-U campaign
and is in part due to the control difficulties of associated with
a short-pulse, highly-elongated, unstable plasma. The worst
errors always occur during these fast transient events, and rep-
resents real physical uncertainty since on this fast time scale
induced vessel currents do not have time to decay, and have a
shielding effect on the diagnostics. In other words the under-
lying EFIT01 equilibria also have more uncertainty at these
times.

8
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Figure 11. Coil currents designed by with fminsearch + Eqnet in
order to construct an elongated equilibrium.

The timetraces in figure 8 includes predictions from the for-
ward version, where shaping parameters have been derived
from the flux surfaces, and from the forward-control version
(direct prediction of the parameters). Both sets of NN predic-
tions match each other and EFIT01 closely. In these figures,
the control version has slightly less error overall but this is not
universal. Neither version is substantially superior to the other
so the main tradeoff is in terms of the desired output type, with
flux surface prediction being the more flexible option.

2.5.3. Ensemble agreement as an indicator of prediction
uncertainty. We advocate that the disagreement between
ensemble members can be used as an indicator for predic-
tion uncertainty. The logic is that since the NNs were trained
with different shot data and initialization weights, they will
tend to give different predictions for samples that are hard
to predict. This is not a direct conversion; often the differ-
ence between NNs is smaller than the difference of the NN
vs EFIT01. The shaded red areas in figure 8 is a measure of
agreement between the underlying NN ensemble members in
Eqnet, plotted at ±3 standard deviations. We observe the dis-
agreement between NNs is not constant but varies throughout
the shot, for example, increasing substantially for all signals in
the last 300 ms of the shot. This is also the time period where
prediction errors are larger, and where it is known that there is
more uncertainty in the reconstruction (due to the fast dynam-
ics at beginning or end of shot). This information could be
used to help with safe deployment of NN-based applications,
for example, by relying on Eqnet only if the disagreement is
below a certain threshold.

2.5.4. Comparison vs RTEFIT. As discussed in the introduc-
tion, one of the possible applications for Eqnet is to perform
real-time equilibrium reconstruction during shots. On NSTX-
U this task is performed by the RTEFIT algorithm. The recon-
struction version of Eqnet can functionally act like RTEFIT
since it is trained to predict equilibria using the same magnetic
signals as inputs. Additionally, Eqnet is trained on the EFIT01
outputs which is a more accurate reconstruction than RTEFIT,
so there is a possibility for Eqnet to outperform RTEFIT by
some standards.

To clarify the relationship, EFIT01 is the offline magnetics-
only reconstruction and RTEFIT is the online real-time ver-
sion. There are a few key differences between these codes.
Most importantly, EFIT01 performs more iterations and
achieves better convergence of the Grad–Shafranov solution,
whereas RTEFIT only has time to compute one iteration per
equilibrium. Second, EFIT01 can perform non-causal filter-
ing of the diagnostics since it has access to future measure-
ments for applying, e.g., drift correction. Lastly, RTEFIT is
only available starting at 100–150 ms into the shot whereas
EFIT01 is run offline for times larger than ∼30 ms.

One source of error for RTEFIT stems from occasional fail-
ure to reach convergence. This failure is more likely to occur
during large changes to the plasma, such as strong oscillations,
or if the boundary-defining point is switching between vari-
ous locations. Another source of error is related to the vessel
eddy currents. As noted in the original NSTX implementation,
the vessel current measurements are computed via Ohm’s law
I = Vmeas/R neglecting dynamical effects [33, 34], which is
accurate enough to prevent ‘an unphysical solution, yet is large
enough to permit the solution to deviate from the computed
value during periods of fast current transients’ [33]. Vessel
currents can also have the effect of temporarily shielding mag-
netic sensors from changes that are happening to the plasma,
negatively impacting the reconstruction.

Figure 9 compares several reconstructed signals from
EFIT01, Eqnet, and RTEFIT for a few shots from the test
dataset, and highlights that Eqnet can outperform RTEFIT
especially in relation to the two error sources (convergenceand
induced vessel currents).

The first panel figure 9(a) depicts ROMP the radius of the
plasma boundary at the outer midplane. Eqnet matches EFIT01
closely, while RTEFIT deviates from EFIT01 at t = 0.10–0.13
and again at t = 0.20–0.29 s. The former period is due to
RTEFIT being switched on and requiring several iterations to
converge. The latter error is due to the vessel current effect.
During this time 0.20–0.29 s the plasma was changing from
limited to diverted and moving radially outward. This radial
plasma movement induces strong vessel currents, and RTE-
FIT does not coincide with EFIT01 until this motion stops and
eddy currents die down.

In figure 9(b) we observe the measurements of the upper
gap during a shot that was experiencing undesired verti-
cal oscillations. The RTEFIT signal is phase-shifted behind
EFIT01 by 5 ms indicating the length of time the vessel
dynamics are exerting strong influence. By contrast Eqnet is
in-phase with EFIT01 demonstrating that the NN has learned
how to compensate for these dynamic effects.

Convergence-related issues are shown in figures 9(c) and
(d). During the time period shown in figure 9(c), the plasma
was oscillating significantly, and the boundary point was
switching rapidly between an inner-wall touch point, upper x-
point, and outer-wall touch point. This led to insufficient con-
vergence for RTEFIT, and so Zmaxis, the vertical position of the
magnetic axis swings wildly by >50 cm. (Note that RTEFIT
will aggressively move the magnetic axis, but the boundary
measurements are not changing by quite this magnitude.) One
of these equilibria at t = 1.23 s is plotted in figure 9(d). While
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Figure 12. Dimensionality reduction of the Pertnet dataset using
PCA. The outlined boxes indicate 99.5% captured variance and the
number of components used for each variable.

the boundary is relatively close to the EFIT01 boundary, it is
clear that the internal flux contours are very different.

These benefits of a NN-based approach must be weighed
against disadvantages such as a weaker ability to generalize,
and the need for high-quality training data that may not exist
for, e.g. a newly built machine. While a NN may not be imme-
diately usable during new machine commissioning, it could
increasingly offer benefits as a reconstruction backup as data
is collected over time.

2.5.5. Robustness to diagnostic failure. Another aspect to
consider for deployment is robustness of the NN to sensor fail-
ure. For example, if one of the magnetic probes dies, it would
be beneficial if experiments could continue as normal with
only a slight decrease in performance. To investigate this issue,
we trained the reconstruction-version with all sensor inputs,
and then zeroed out one of the magnetic probes and measured
the predictions. This was repeated for all 75 magnetic probes,
and the average of these results is recorded in table 1. We note
that most errors have roughly doubled compared to the origi-
nal reconstruction-mode predictions. For many of the signals,
the 90th percentile errors are now in the range of 2–3 cm.
This would likely be workable, but with reduced operational
capability. For example, the ROMP target would likely have to
decrease to give margin for wall clearance. These results were
obtained using light (1%) dropout during training to randomly
zero out some magnetic sensor inputs. It is likely possible to
improve these results further by optimizing the dropout rate,
to strike a balance between peak performance and robustness.

2.6. Design application

As a simple application task we attempt to solve an inverse
equilibrium design problem using the Eqnet forward-version.
The design problem is: given a target shape, what are the coil
currents that will transform an equilibrium into that shape.
Notationally, we have target shape y and the NN is a map from
inputs x to an equilibrium f (x). (We restrict to only modify-
ing coil currents, not all of the network inputs.) The design
procedure is carried out by using the Matlab function fmin-
search, which is a standard optimization algorithm based on

the Nelder–Mead method. At each iteration, the search makes
a call to the NN (which evaluates f (x)) and adjusts the inputs
to minimize the cost function J := ( f (x) − y)2.

The target shape is obtained by beginning with a LSN
diverted equilibrium and increasing the elongation from 1.65
to 1.95. The target boundary also has a smaller minor radius
54 cm vs 58 cm and larger inner and outer gaps. The initial, tar-
get, and final shapes are shown in figure 10, and coil currents
in figure 11. Note that the boundary ‘final’ boundary is not
the NN-prediction (which exactly matches the target), but the
result of a standard free-boundary calculation using the NN-
designed coil currents. The equilibrium produced by the NN
is indeed much closer to the target, with some small differ-
ences in the boundary at the lower and upper. Given that this is
a novel equilibrium for the NN, which has not seen this exact
equilibrium before and was not generated via EFIT, we expect
this gives a reasonable estimate of generalization error. This
level is also acceptable for feedforward planning applications,
since feedback control can correct for small errors.

3. Pertnet

3.1. Plasma response model

‘Pertnet’ is a NN we have designed to predict the non-
rigid plasma response, which is a term related to the
Grad–Shafranov equation that arises in the development of the
shape control model. This section includes some background
context on the shape control model and plasma response. For
further detail on shape control, we refer readers to the review
paper by Ambrosino and Albanese [35]. The nonrigid plasma
response describes how the plasma current shifts and redis-
tributes in response to changes in the currents of surrounding
conductors. The response can be written in units of current or
units of flux which are related by the grid mutual inductance:

∂ψpla
g

∂Ii
= Mgg

∂Ipla
g

∂Ii
. (6)

Here, ψpla
g is the grid flux due to plasma currents, Ipla

g is the
plama current distribution, and Mgg is the mutual inductance
matrix for the grid. We use the ‘pla’ superscript to distinguish
flux that is due to plasma sources, since the total flux at any
point is due to both plasma and external sources. The physical
interpretation is that when the current in an external conduc-
tor is perturbed, this changes the background magnetic field.
Since the plasma is carrying current it experiences a Lorentz
force that causes it to shift back into equilibrium. We rely on
the Gspert code [25] to obtain the plasma response, which is
based on a linearization to the Grad–Shafranov equation. In
addition to obtaining the response due to current changes, it
is often useful to obtain the response due to changes in global
parameters such as βp and li. These are included in the Pertnet
predictions, although not explicitly discussed here.

The plasma response arises in several places in the shape
control model. For example, the model often begins by writing
a circuit equation for all the conducting elements within the

10
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Figure 13. Hyperparameter grid scans used to identify the best performing Pertnet model. The optimal model depends on which Pertnet
mode is under consideration, with the control mode favoring larger networks than the standard mode.

Figure 14. Regression of the Pertnet flux prediction vs calculated
values from Gspert. The data shown is the test dataset for the
response to PF5. Each plot shows the coefficient of the
corresponding PCA mode of the flux response.

tokamak:

vi = RiIi + ψ̇i

= RiIi + Mi jİ j +
∂ψpla

i

∂I j
İ j

= RiIi + Mi jİ j + Mig
∂Ipla

g

∂I j
İ j (7)

where vi is the applied voltage from external power supplies,
Ri is the resistance of each element. We see that the plasma

response contributes to the flux change at conductors and must
be accounted for when modeling current evolution. Addition-
ally, this term is needed for modeling how various feedback
parameters (x-points, current centroid) change with respect to
the inputs. Consider some inputs x that define the equilibrium
(x includes the coil currents), and some shaping parameters y
that are derived from the equilibrium flux. This relation is

y = f (ψ(x)). (8)

f (·) is the mapping from equilibrium to parameters, and
ψ(·) is the map from inputs to equilibrium. By the chain rule,
in order to see how the inputs affect the shape parameters we
need access to the plasma response.

∂y
∂x

=
∂ f
∂ψg

(
∂ψext

g

∂x
+

∂ψpla
g

∂x

)
. (9)

We train two versions of the Pertnet model—a standard

flux mode that calculates the flux response
∂ψ

pla
g

∂x and a control-
oriented mode that directly estimates the parameter responses
∂y
∂x . To illustrate this mapping from flux response to parame-
ter response via equation (9), we show the derivation for three
parameters (current centroid response, x-point response, and
vertical growth rate) which are the main parameters predicted
by the Pertnet control mode:

3.1.1. Current centroid response. The current centroid posi-
tion is the current-weighted average of each coordinate over
the plasma domain Ω:

Zcur =
1
Ip

∑
Ω

ZgIg. (10)

Applying equations (6) and (9) gives

∂Zcur

∂x
=

1
Ip

∑
Ω

Zg

(
M−1

gg
∂ψg,pla

∂x

)
. (11)

11



Nucl. Fusion 62 (2022) 086042 J.T. Wai et al

Figure 15. Comparison of the plasma response to an li perturbation as calculated by the Gspert code and pertnet NN approximator. The
plasma boundary is overlayed in black.

3.1.2. X-point response. The x-point is the location at which
the flux gradient is equal to zero, so finding the x-point is equiv-
alent to finding the root of the equation F(s) = [ψr(s) ψz(s)]T.
Using Newton’s method with the Jacobian of F defined JF, one
could find the root by successively applying updates as

Δs = −JF(s)−1F(s). (12)

If we have already converged to an x-point, but then apply
a perturbation to the flux, the response of the x-point is

∂(rx, zx)
∂x

=
∂Δs

∂x
= −JF(s)−1

⎡
⎢⎣
∂ψr

∂x
∂ψz

∂x

⎤
⎥⎦ (13)

which depends explicitly on the plasma response via the last
terms since

∂ψr

∂x
=

∂

∂r

(
∂ψext

∂x
+

∂ψpla

∂x

)
. (14)

3.1.3. Vertical growth rate. The vertical growth rate is an
instability that can be related to the evolution of currents
in conducting structures. Defining the response term in

equation (7) as
∂ψ

pla
i

∂I j
:=Xi j, this equation can be rewritten in

matrix form as
v = RI+ (M+X)İ (15)

or equivalently

İ = AI+Bv

A := − (M+X)−1R

B := (M+X)−1 (16)

which is the standard form of the shape control state space
model. The vertical growth rate is taken as the largest unstable
eigenvalue of the A matrix.

γ = max(real(eig(A))). (17)

3.2. Data inputs and outputs

Similar to Eqnet, we train two versions of the Pertnet
model—a ‘standard’ flux mode that calculates the flux

response
∂ψ

pla
g

∂x and a ‘control’ mode that predicts the param-
eter responses ∂y

∂x . The standard mode is more general in that
all aspects of the shape control model can be derived from
it, albeit with more computational effort. On the other hand,
control mode skips some computational steps in finding the
shaping parameter response directly. This would make it use-
ful for experiments in providing fast estimates to the shape
controller. A potential downside is that if the desired outputs
are modified then the NN requires retraining. Additionally, the
control mode does not predict all aspects of the shape control
model, such as what the full X matrix is.

12
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Figure 16. Comparison of the plasma response to a PF1AU current perturbation as calculated by the Gspert code and pertnet NN
approximator. The plasma boundary is overlayed in black.

For both modes, the inputs are a complete description of
the equilibrium. We assume more inputs here than we did for
Eqnet because we are linearizing around the current equilib-
rium and can thus assume access to it, either via a NN predic-
tion or reconstruction algorithm. The inputs include: ψ(r, z) as
calculated by EFIT01, the EFIT01 pressure P′(ψ) and FF′(ψ)
profiles, current distribution Jφ, coil and vessel currents, Ip,
coordinates of the boundary contour, ψ at the magnetic axis
and boundary, and the (R, Z) position of the magnetic axis,
x-points, and current centroid.

For the standard mode, the output is the flux response on
the grid. Note that from equation (6) we could predict in units
of flux or units of currents. For the NN, it is advantageous to
predict in flux units. This is because the current response can
contain highly localized information about the current vari-
ation in nearby grid cells. By contrast the flux response has
less spatial variation and has better data compression. In other
words, the grid mutual inductance Mgg acts like a smoothing
or averaging filter when transforming from current to flux.

3.3. Architecture and hyperparameter tuning

We use the same set of∼25 000 equilibria samples and chrono-
logical train-validation-test data splitting method used in Eqnet
(section 2). For each sample, we run Gspert to find the plasma
response to the eight active PF coils, 40 vessel circuits, Ip, βp,
and li. For the standard flux mode, we train an individual NN to
predict the response of each quantity. This performs better than

predicting the flux response to all inputs simultaneously, which
does not dimensionally reduce very well, since each response
quantity can vary significantly in magnitude. For the control
mode, which predicts responses of individual parameters that
are of much lower dimension than the flux response, it was
found that a single NN was sufficient.

PCA is used to compress all the inputs and outputs, choos-
ing the number of components to capture 99.5% variance, with
results of this procedure shown in figure 12. Only some of the
response quantities are plotted. Note that the equilibrium cur-
rents Jφ has a much larger representation than the flux ψ, again
indicating that the flux is generally smoother than the current.
All response variables have the similar order of magnitude
(∼ten components). Some variables, such as the ohmic (OH)
coil have expectedly higher variation. The OH coil spans the
entire vertical length of NSTX-U, and thus can interact with
the plasma from multiple angles depending on plasma posi-
tion. After PCA, the coefficients are then normalized to zero
mean and unit variance. The full architecture of the model is
identical to Eqnet and shown in figure 5.

Training is performed in Pytorch with the Adam optimizer.
Hyperparameters are selected by performing grid scans over
the various model parameters such as size and depth, with
results shown in figure 13. Early on, it was observed visually
that using the L1 loss (absolute error) function performed bet-
ter than the standard L2 loss (sum of squares). This is theorized

13



Nucl. Fusion 62 (2022) 086042 J.T. Wai et al

Figure 17. Predictions of the plasma response for several parameters (growth rate, current centroid response to PF1AU, and x-point position
response to PF1AU) as calculated by Gspert and versions of Pertnet. The Pertnet control mode directly predicts these parameters, while the
pertnet flux mode predicts the flux response which maps to the parameter responses. The shaded blue region corresponds to ±4 standard
deviations of the disagreement between NN ensemble members.

to be a result of noise and outliers in the dataset. In particular,
a small fraction of samples were observed to have spurious
results due to running Gspert automatically on all 25k+ equi-
libria. These include errors such as not converging fully to
features of interest, or not identifying the boundary correctly in
a situation with multiple x-points and touch points. An attempt
was made to perform automated filtering of the outputs, but
manual inspection of all results was not performed. In addition,

the samples are theorized to have a lot of noise due the inher-
ent noise associated with taking derivatives. Since L2 penal-
izes squared errors, the network was probably learning too
much from predictions with large errors that should have been
identified as outliers. Another possible indicator of stochastic-
ity is that the performance improves by including 5%–10%
dropout on the network weights during training. The final net-
work is smaller than Eqnet with the standard/control modes
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Figure 18. Regression of Pertnet parameter responses vs the Gspert values, based on predictions from Pertnet-control mode.

having 4/5 layers with hidden layer size 400/800. Note that
the hyperparameters differ significantly between the modes
because they are actually problems with relatively different
structure, since the standard mode has a NN for each flux
response, and the control mode is a single NN that predicts
all parameter responses.

3.4. Performance

3.4.1. Model timing. Using the same setup as before (Mac-
book 3.5GHz Dual-Core Intel i7 CPU), the inference times for
individual NNs are measured at 230 μs (standard flux mode)
and 710 μs (control mode). This indicates these NNs could be

adapted to real-time applications without issue. Since the flux
mode is composed of many NNs (one for each response vari-
able) this may require a parallelized implementation in order
to keep computational times low.

3.4.2. General prediction performance. Performance of the
flux response prediction is shown in figure 14 where we
have plotted the NN-predicted PCA coefficient vs the Gspert
values, for the first four PCA modes. These predictions are
for the flux response to PF5 the midplane outboard shaping,
for the entire test dataset. The densest clusters lie close to
the true values, though there is scatter for individual sample
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points. As expected, the prediction is most accurate on the
first PCA mode (R2 = 0.755) and decreases slightly with each
increasing mode number.

Figures 15 and 16 show individual flux responses to two
different perturbation sources, li and the upper inboard coil
PF1AU. The predicted vs actual flux responses are difficult to
distinguish by eye, although there are some slight differences.
Predictions of the timetraces for parameter responses are plot-
ted in figure 17 for as single shot 204653. These include the
current centroid response, x-point response, and growth rate
as obtained by equations (11), (13) and (17). Even though
the flux response is not trained to predict these parameters,
the extracted parameter response is close to the Gspert val-
ues. However, if only interested in the parameter response, the
control mode outperforms slightly. For example, in the sec-
ond half of the shot, Gspert estimates that the radial position
of the x-point (Rx,lo) will grow increasingly more sensitive to
the PF1AU coil. The control-mode captures this trend, though
the standard flux mode does not trend as strongly. The growth
rate prediction for both models matches Gspert very accu-
rately, which is a nice confirmation of prediction of all the
NN models. Note that the growth rate prediction is unlike the
other parameters, in that it does not depend on the response
to just one input coil, but all the coils simultaneously (via
equations (16) and (17), since the X matrix includes effects
from all coils). Even if individual flux responses can each have
inaccuracies, this is an indicator that the dominant effects upon
the coil current dynamics is being captured.

Lastly, figure 18 shows the performance of Pertnet-control
mode for predicting individual parameter responses, in this
case to PF5. We note that the individual responses generally
have slightly higher correlation coefficients than prediction of
the flux modes. While it is not a linear transformation between
flux and parameters, this is consistent with the observation on
figure 17 that direct parameter prediction performed slightly
better.

The most accurate prediction is the growth rate (R2 = 0.979)
while the least accurate is the Z-derivative of the lower x-
point (R2 = 0.743). We record that 50th and 90th percentile
errors for these respective parameters are 1.2/4.6 Hz and
0.16/1.00(cm kA−1). This is a fairly large difference between
the 50th and 90th percentiles. Again, this is a result of the
largest responses and prediction errors being driven by a small
number of samples as a result of the dynamic periods during
rampup and loss-of-control (e.g. for the worst 5% of predic-
tions, 88% occur within the first or last 200 ms of the shot).
This tends to manifest itself worse in the vertical direction
than in the radial direction, consistent with the vertical instabil-
ity effect. Note the scale difference for R-coordinate response
vs the Z-coordinate responses, and that the R2 coefficient for
radial responses is higher indicating better predictions for this
direction.

4. Conclusion

In this work we have introduced two NNs for the NSTX-
U tokamak, as part of a suite of prediction and simulation
tools being developed for optimizing plasma scenarios. The

NNs include Eqnet, a reconstruction or forward free-boundary
equilibrium solver, and Pertnet which calculates the nonrigid
plasma response. As a simple application, we use Eqnet to
design the coil currents for a desired target equilibria, indi-
cating good performance and stability. Both NNs are trained
and tested with different combinations of input and output
data. We find that using Eqnet to reconstruct equilibria from
magnetic diagnostics gives some performance improvements
over RTEFIT especially when vessel eddy currents are sig-
nificant. We report strong performance for Pertnet in predict-
ing the plasma response. If only interested in the response
of various parameters, it is simpler (fewer NNs to train) and
marginally more accurate to predict these directly. However,
predicting the full flux response is needed in some situations
and can give good estimates of the parameters with additional
computational steps.
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